Fast, smooth and adaptive regression in metric spaces

نویسنده

  • Samory Kpotufe
چکیده

It was recently shown that certain nonparametric regressors can escape the curse of dimensionality when the intrinsic dimension of data is low ([1, 2]). We prove some stronger results in more general settings. In particular, we consider a regressor which, by combining aspects of both tree-based regression and kernel regression, adapts to intrinsic dimension, operates on general metrics, yields a smooth function, and evaluates in time O(logn). We derive a tight convergence rate of the form n−2/(2+d) where d is the Assouad dimension of the input space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

On metric spaces induced by fuzzy metric spaces

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

متن کامل

Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces

In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of  rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...

متن کامل

Fixed point results in cone metric spaces endowed with a graph

In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009